evoML enhances the efficiency of developing high-quality machine learning models by simplifying and automating the comprehensive data science process, enabling the conversion of raw data into meaningful insights in mere days rather than several weeks. It takes charge of vital tasks such as automatic data transformation that identifies anomalies and rectifies imbalances, employs genetic algorithms for feature engineering, conducts parallel evaluations of multiple model candidates, optimizes using multi-objective criteria based on custom metrics, and utilizes GenAI technology for generating synthetic data, which is especially useful for swift prototyping while adhering to data privacy regulations. Users maintain complete ownership of and can modify the generated model code, facilitating smooth deployment as APIs, databases, or local libraries, thereby preventing vendor lock-in and promoting clear, auditable workflows. Additionally, evoML equips teams with user-friendly visualizations, interactive dashboards, and detailed charts to detect patterns, outliers, and anomalies across various applications, including anomaly detection, time-series forecasting, and fraud prevention. With its robust features, evoML not only accelerates the modeling process but also empowers users to make data-driven decisions with confidence.